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vii

Welcome to Algebra and Trigonometry: Real Mathematics, Real People, Seventh Edition. I am proud to present 
to you this new edition. As with all editions, I have been able to incorporate many useful comments from you, our 
user. And while much has changed in this revision, you will still find what you expect—a pedagogically sound, 
mathematically precise, and comprehensive textbook. In this book you will see how algebra and trigonometry are used 
by real people to solve real-life problems and make real-life decisions.

In addition to providing real and relevant mathematics, I am pleased and excited to offer you something brand 
new—a companion website at LarsonPrecalculus.com. My goal is to provide students with the tools they need 
to master algebra and trigonometry.

New To This Edition

NEW LarsonPrecalculus.com
This companion website offers multiple tools and resources 
to supplement your learning. Access to these features is free. 
View and listen to worked-out solutions of Checkpoint 
problems in English or Spanish, explore examples, download 
data sets, watch lesson videos, and much more.

NEW Checkpoints
Accompanying every example, the Checkpoint problems 
encourage immediate practice and check your understanding 
of the concepts presented in the example. View and listen to 
worked-out solutions of the Checkpoint problems in English 
or Spanish at LarsonPrecalculus.com.

NEW How Do You See It?
The How Do You See It? feature in each section presents 
an exercise that you will solve by visual inspection 
using the concepts learned in the lesson. This exercise is 
excellent for classroom discussion or test preparation.

NEW Data Spreadsheets
Download these editable spreadsheets from 
LarsonPrecalculus.com and use the data to solve exercises.

REVISED Exercise Sets
The exercise sets have been carefully and extensively 
examined to ensure they are rigorous and relevant and to 
include all topics our users have suggested. The exercises 
have been reorganized and titled so you can better 
see the connections between examples and exercises. 
Multi-step exercises reinforce problem-solving skills and 
mastery of concepts by giving you the opportunity to apply 
the concepts in real-life situations.

130.     HOW DO YOU SEE IT? Decide whether the two 
functions shown in each graph appear to be inverse 
functions of each other. Explain your reasoning.

 (a) 
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130.     HOW DO YOU SEE IT?
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REVISED Remarks
These hints and tips reinforce or expand upon concepts, help you learn how to study mathematics, 
address special cases, or show alternative or additional steps to a solution of an example.

Trusted Features

Calc Chat
For the past several years, an independent website—CalcChat.com—has provided free solutions to all 
odd-numbered problems in the text. Thousands of students have visited the site for practice and help 
with their homework.

Side-By-Side Examples
Throughout the text, we present solutions to examples 
from multiple perspectives—algebraically, graphically, and 
numerically. The side-by-side format of this pedagogical 
feature helps you to see that a problem can be solved in more 
than one way and to see that different methods yield the same 
result. The side-by-side format also addresses different 
learning styles.

Why You Should Learn It Exercise
An engaging real-life application of the concepts in the 
section. This application exercise is typically described in 
the section opener as a motivator for the section.

Library of Parent Functions
To facilitate familiarity with the basic functions, several elementary and nonelementary functions have 
been compiled as a Library of Parent Functions. Each function is introduced at its first appearance in the 
text with a definition and description of basic characteristics. The Library of Parent Functions Examples 
are identified in the title of the example and there is a Review of Library of Parent Functions after 
Chapter 4. A summary of functions is presented on the inside cover of this text.

Make a Decision Exercises
The Make a Decision exercises at the end of selected sections 
involve in-depth applied exercises in which you will work with 
large, real-life data sets, often creating or analyzing models. 
These exercises are offered online at LarsonPrecalculus.com.

Chapter Openers
Each Chapter Opener highlights a real-life modeling problem, 
showing a graph of the data, a section reference, and a short 
description of the data.

Explore the Concept
Each Explore the Concept engages you in active discovery of 
mathematical concepts, strengthens critical thinking skills, and 
helps build intuition.

Explore the Concept
Complete the following:

i1 = i  i7 = ■
 i8 = ■
 i9 = ■

i10 = ■
i11 = ■
i12 = ■

i2 = −1 
i3 = −i 
i4 = 1 
i5 = ■ 
i6 = ■ 

What pattern do you see? 
Write a brief description of 
how you would find i raised to 
any positive integer power.
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What’s Wrong?
Each What’s Wrong? points out common errors made using graphing utilities.

Technology Tip
Technology Tips provide graphing calculator tips or provide alternative methods 
of solving a problem using a graphing utility.

Algebra of Calculus
Throughout the text, special emphasis is given to the algebraic techniques used in 
calculus. Algebra of Calculus examples and exercises are integrated throughout the 
text and are identified by the symbol .

Algebraic-Graphical-Numerical Exercises
These exercises allow you to solve a problem using multiple approaches––
algebraic, graphical, and numerical. This helps you to see that a problem can be 
solved in more than one way and to see that different methods yield the same result.

Modeling Data Exercises
These multi-part applications that involve real-life data offer you the opportunity to 
generate and analyze mathematical models.

Vocabulary and 
Concept Check
The Vocabulary and Concept Check 
appears at the beginning of the 
exercise set for each section. Each of 
these checks asks fill-in-the-blank, 
matching, and non-computational 
questions designed to help you learn 
mathematical terminology and to test 
basic understanding of that section’s 
concepts.

What you should learn/Why you should learn it
These summarize important topics in the section and why they are important 
in math and in life.

Chapter Summaries
The Chapter Summary includes explanations and examples of the objectives 
taught in the chapter.

Error Analysis Exercises
This exercise presents a sample solution that contains a common error which 
you are asked to identify.

Enhanced WebAssign combines exceptional algebra and trigonometry 
content with the most powerful online homework solution, WebAssign. 
Enhanced WebAssign engages you with immediate feedback, rich tutorial 
content and interactive, fully customizable eBooks (YouBook) helping 
you to develop a deeper conceptual understanding of the subject matter.

Technology Tip
Although a graphing utility can 
be useful in helping to verify an 
identity, you must use algebraic 
techniques to produce a valid 
proof. For example, graph the 
two functions y1 = sin 50x and 
y2 = sin 2x in a trigonometric 
viewing window. On some 
graphing utilities the graphs 
appear to be identical. 
However, sin 50x ≠ sin 2x.However, sin 50x0x0 ≠ sin 2x2x2 .

9781305117495_05_02_p358.indd   358 9/4/14   8:53 AM

What you should learn
  Describe angles.
  Use degree measure.
  Use radian measure and convert 

between degrees and radians.
  Use angles to model and solve 

real-life problems.

Why you should learn it
Radian measures of angles are 
involved in numerous aspects of our 
daily lives. For instance, in Exercise 
110 on page 407, you are asked to 
determine the measure of the angle 
generated as a skater performs an 
axel jump.

9781305252509_05_01_p398.indd   398 10/9/14   11:39 AM
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Complete Solutions Manual

• ISBN-13: 9781305252530

This manual contains solutions to all exercises from the text, including Chapter Review 
Exercises and Chapter Tests. This manual is found on the Instructors Companion Site.

Test Bank 

• ISBN-13: 9781305252547

This supplement includes test forms for every chapter of the text, and is found on the 
instructor companion site.

Text-Specific DVDs 

• ISBN-13: 9781305252516

These text-specific DVDs cover all sections of the text—providing explanations of key 
concepts as well as examples, exercises, and applications in a lecture-based format.

Enhanced WebAssign

Printed Access Card: 9781285858333
Instant Access Code: 9781285858319

Enhanced WebAssign combines exceptional mathematics content with the most powerful 
online homework solution, WebAssign. Enhanced WebAssign engages your students with 
immediate feedback, rich tutorial content, and an interactive, fully customizable eBook, 
Cengage YouBook helping students to develop a deeper conceptual understanding of the 
subject matter.

Instructor Companion Site
Everything you need for your course in one place! This collection of book-specific 
lecture and class tools is available online via www.cengage.com/login. Access and 
download PowerPoint presentations, images, instructor’s manual, and more.

Cengage Learning Testing Powered by Cognero 

• ISBN-13: 9781305259010

CLT is a flexible online system that allows you to author, edit, and manage test bank 
content; create multiple test versions in an instant; and deliver tests from your LMS, your 
classroom, or wherever you want. This is available online via www.cengage.com/login.

Instructor Resources
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Student Solutions Manual

• ISBN-13: 9781305252493

Contains fully worked-out solutions to all of the odd-numbered exercises in the text, 
giving you a way to check your answers and ensure that you took the correct steps to 
arrive at an answer.

Enhanced WebAssign

Printed Access Card: 9781285858333
Instant Access Code: 9781285858319

Enhanced WebAssign combines exceptional mathematics content with the most 
powerful online homework solution, WebAssign. Enhanced WebAssign engages you 
with immediate feedback, rich tutorial content, and an interactive, fully customizable 
eBook, Cengage YouBook helping you to develop a deeper conceptual understanding 
of the subject matter.

CengageBrain.com
To access additional course materials, please visit www.cengagebrain.com. At the 
CengageBrain.com home page, search for the ISBN of your title (from the back cover 
of your book) using the search box at the top of the page. This will take you to the 
product page where these resources can be found.

Student Resources
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2 Chapter P Prerequisites

P.1 Real Numbers

What you should learn
  Represent and classify real 

numbers.
  Order real numbers and use 

inequalities.
  Find the absolute values of 

real numbers and the distance 
between two real numbers.

  Evaluate algebraic expressions 
and use the basic rules and 
properties of algebra.

Why you should learn it
Real numbers are used in every 
aspect of our lives, such as finding 
the surplus or deficit in the federal 
budget. See Exercises 89–94 on 
page 10.

©David Davis/Shutterstock.com

Every point on the real number line 
corresponds to exactly one real number.

3− 0.75 π

−3 −2 −1 0 1 2 3

5

Every real number corresponds to 
exactly one point on the real 
number line.
Figure P.3 One-to-One Correspondence

−3 −2 −1 0 1 2 3

−2.4 2

page 10.

3− 0.75 π

−3 −2 −1 0 1 2 3

5

Real Numbers
Real numbers are used in everyday life to describe quantities such as age, miles per 
gallon, and population. Real numbers are represented by symbols such as

−5, 9, 0, 4
3, 0.666 .  .  . , 28.21, √2, π, and 3√−32.

Here are some important subsets (each member of subset B is also a member of set A) 
of the set of real numbers.

 {1, 2, 3, 4, .  .  .} Set of natural numbers

 {0, 1, 2, 3, 4, .  .  .} Set of whole numbers

 {.  .  . , −3, −2, −1, 0, 1, 2, 3, .  .  .} Set of integers

A real number is rational when it can be written as the ratio p�q of two integers, where 
q ≠ 0. For instance, the numbers

1
3

= 0.3333 .  .  . = 0.3, 
1
8

= 0.125, and 
125
111

= 1.126126 .  .  . = 1.126

are rational. The decimal representation of a rational number either repeats (as in 
173
55 = 3.145) or terminates (as in 12 = 0.5). A real number that cannot be written as the 
ratio of two integers is called irrational. Irrational numbers have infinite nonrepeating 
decimal representations. For instance, the numbers

√2 = 1.4142135 .  .  . ≈ 1.41

and

π = 3.1415926 .  .  . ≈ 3.14

are irrational. (The symbol ≈ means “is approximately equal to.”) Figure P.1 
shows subsets of real numbers and their relationships to each other.

Real
numbers

Irrational
numbers

Rational
numbers

Integers

Noninteger
fractions

(positive and
negative)

Whole
numbers

Negative
integers

Natural
numbers

Zero

 Figure P.1 Subsets of Real Numbers

Real numbers are represented graphically by a real number line. The point 0 on 
the real number line is the origin. Numbers to the right of 0 are positive and numbers 
to the left of 0 are negative, as shown in Figure P.2. The term nonnegative describes a 
number that is either positive or zero.

−4 −3 −2 −1 0 1 2 3 4

Origin
Positive
direction

Negative
direction

 Figure P.2 The Real Number Line

There is a one-to-one correspondence between real numbers and points on the real 
number line. That is, every point on the real number line corresponds to exactly one 
real number, called its coordinate, and every real number corresponds to exactly one 
point on the real number line, as shown in Figure P.3.
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Ordering Real Numbers
One important property of real numbers is that they are ordered.

Definition of Order on the Real Number Line

If a and b are real numbers, then a is less than b when b − a is positive. This 
order is denoted by the inequality a < b. This relationship can also be described 
by saying that b is greater than a and writing b > a. The inequality a ≤ b means 
that a is less than or equal to b, and the inequality b ≥ a means that b is greater 
than or equal to a. The symbols <, >, ≤, and ≥ are inequality symbols.

Geometrically, this definition implies that a < b if and only if a lies to the left
of b on the real number line, as shown in Figure P.4.

210−1

ba

 Figure P.4 a < b if and only if a lies to the left of b.

EXAMPLE 1EXAMPLE 1EXAMPLE 1  Interpreting Inequalities

See LarsonPrecalculus.com for an interactive version of this type of example.

Describe the subset of real numbers that the inequality represents.

a. x ≤ 2 b. x > −1 c. −2 ≤ x < 3

Solution
a.  The inequality x ≤ 2 denotes all real numbers less than or equal to 2, as shown in 

Figure P.5.

b.  The inequality x > −1 denotes all real numbers greater than −1, as shown in 
Figure P.6.

c.  The inequality −2 ≤ x < 3 means that x ≥ −2 and x < 3. The “double 
inequality” denotes all real numbers between −2 and 3, including −2 but not 
including 3, as shown in Figure P.7.

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

Describe the subset of real numbers that the inequality represents.

a. x > −3 b. 0 < x ≤ 4 

Inequalities can be used to describe subsets of real numbers called intervals. In the 
bounded intervals below, the real numbers a and b are the endpoints of each interval.

Bounded Intervals on the Real Number Line

 Notation Interval Type Inequality Graph

[a, b] Closed a ≤ x ≤ b 
a b

x

(a, b) Open a < x < b 
a b

x

[a, b)  a ≤ x < b 
a b

x

(a, b]  a < x ≤ b 
a b

x

Figure P.5

43210
x

x ≤ 2

Figure P.6

x

0−1−2 1 2 3

x > −1

Figure P.7

0−1−2 1 2 3
x

−2 ≤ x < 3

Remark
The endpoints of a closed 
interval are included in the 
interval. The endpoints of an 
open interval are not included 
in the interval.
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The symbols ∞, positive infinity, and −∞, negative infinity, do not represent 
real numbers. They are simply convenient symbols used to describe the unboundedness 
of an interval, such as (1, ∞) or (−∞, 3].

Unbounded Intervals on the Real Number Line

 Notation Interval Type Inequality Graph

[a, ∞)  x ≥ a 
a

x

(a, ∞) Open x > a 
a

x

(−∞, b]  x ≤ b 
b

x

(−∞, b) Open x < b 
b

x

(−∞, ∞) Entire real line −∞ < x < ∞ x

EXAMPLE 2EXAMPLE 2EXAMPLE 2 Using Inequalities to Represent Intervals

Use inequality notation to represent each of the following.

a. c is at most 2.

b. All x in the interval (−3, 5]
c. t is at least 4 but less than 11.

Solution
a. The statement “c is at most 2” can be represented by c ≤ 2.

b. “All x in the interval (−3, 5]” can be represented by −3 < x ≤ 5.

c. The statement “t is at least 4 but less than 11” can be represented by 4 ≤ t < 11.

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

Use inequality notation to represent the statement “x is greater than −2 and at most 4.”

EXAMPLE 3EXAMPLE 3EXAMPLE 3 Interpreting Intervals

Give a verbal description of each interval.

a. (−1, 0)
b. [2, ∞)
c. (−∞, 0)

Solution
a. This interval consists of all real numbers that are greater than −1 and less than 0.

b. This interval consists of all real numbers that are greater than or equal to 2.

c. This interval consists of all negative real numbers.

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

Give a verbal description of the interval [−2, 5). 

The Law of Trichotomy states that for any two real numbers a and b, precisely 
one of three relationships is possible:

a = b, a < b, or a > b. Law of Trichotomy

Remark
An interval is unbounded 
when it continues indefinitely 
in one or both directions.
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Absolute Value and Distance
The absolute value of a real number is its magnitude, or the distance between the origin 
and the point representing the real number on the real number line.

Definition of Absolute Value

If a is a real number, then the absolute value of a is

∣a∣ = { a,
−a,

a ≥ 0
a < 0

.

Notice from this definition that the absolute value of a real number is never 
negative. For instance, if a = −5, then ∣−5∣ = −(−5) = 5. The absolute value of 
a real number is either positive or zero. Moreover, 0 is the only real number whose 
absolute value is 0. So, ∣0∣ = 0.

EXAMPLE 4EXAMPLE 4EXAMPLE 4 Evaluating an Absolute Value Expression

Evaluate 
∣x∣
x

 for (a) x > 0 and (b) x < 0.

Solution

a. If x > 0, then ∣x∣ = x and 
∣x∣
x

=
x
x

= 1.

b. If x < 0, then ∣x∣ = −x and 
∣x∣
x

=
−x
x

= −1.

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

Evaluate 
∣x + 3∣
x + 3

 for (a) x > −3 and (b) x < −3. 

Properties of Absolute Value

1. ∣a∣ ≥ 0

3. ∣ab∣ = ∣a∣∣b∣

2. ∣−a∣ = ∣a∣
4. ∣a

b ∣ = ∣a∣
∣b∣, b ≠ 0

Absolute value can be used to define 

0−1−2−3 1 2 3 4

7

Figure P.8  The distance between 
−3 and 4 is 7.

the distance between two points on the real
number line. For instance, the distance between
−3 and 4 is

∣−3 − 4∣ = ∣−7∣ = 7

as shown in Figure P.8.

Distance Between Two Points on the Real Number Line

Let a and b be real numbers. The distance between a and b is

d(a, b) = ∣b − a∣ = ∣a − b∣.

©Samo Trebizan/Shutterstock.com  ©kurhan/Shutterstock.com

Explore the Concept
Absolute value expressions 
can be evaluated on a graphing 
utility. When evaluating an 
expression such as ∣3 − 8∣, 
parentheses should surround the 
expression, as shown below. 
Evaluate each expression. What 
can you conclude?

a. ∣6∣ b. ∣−1∣
c. ∣5 − 2∣ d. ∣2 − 5∣
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Algebraic Expressions and the Basic Rules of Algebra
One characteristic of algebra is the use of letters to represent numbers. The letters are 
variables, and combinations of letters and numbers are algebraic expressions. Here 
are a few examples of algebraic expressions.

5x, 2x − 3, 
4

x2 + 2
, 7x + y

Definition of an Algebraic Expression

An algebraic expression is a combination of letters (variables) and real numbers
(constants) combined using the operations of addition, subtraction, multiplication,
division, and exponentiation.

The terms of an algebraic expression are those parts that are separated by addition. 
For example, 

x2 − 5x + 8 = x2 + (−5x) + 8 

has three terms: x2 and −5x are the variable terms, and 8 is the constant term. The 
numerical factor of a term is called the coefficient. For instance, the coefficient of −5x
is −5, and the coefficient of x2 is 1.

To evaluate an algebraic expression, substitute numerical values for each of the 
variables in the expression. 

EXAMPLE 5EXAMPLE 5EXAMPLE 5 Evaluating Algebraic Expressions

  Value of Value of 
 Expression Variable  Substitute Expression

a. −3x + 5 x = 3 −3(3) + 5 −9 + 5 = −4

b. 3x2 + 2x − 1 x = −1 3(−1)2 + 2(−1) − 1 3 − 2 − 1 = 0

c. 
2x

x + 1
 x = −3 

2(−3)
−3 + 1

 
−6
−2

= 3

Note that you must substitute the value for each occurrence of the variable.

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

Evaluate 4x − 5 when x = 0. 

When an algebraic expression is evaluated, the Substitution Principle is used. 
It states, “If a = b, then a can be replaced by b in any expression involving a.” For 
instance, in Example 5(a), 3 is substituted for x in the expression −3x + 5.

There are four arithmetic operations with real numbers: addition, multiplication, 
subtraction, and division, denoted by the symbols 

+, × or ∙, −, and ÷ or �.

Of these, addition and multiplication are the two primary operations. Subtraction and 
division are the inverse operations of addition and multiplication, respectively.

 Subtraction: Add the opposite of b. Division: Multiply by the reciprocal of b.

a − b = a + (−b) If b ≠ 0, then a�b = a(1
b) =

a
b

.

In these definitions, −b is the additive inverse (or opposite) of b, and 1�b is the 
multiplicative inverse (or reciprocal) of b. In the fractional form a�b, a is the 
numerator of the fraction and b is the denominator.



Section P.1 Real Numbers 7

Because the properties of real numbers below are true for variables and algebraic 
expressions, as well as for real numbers, they are often called the Basic Rules of 
Algebra. Try to formulate a verbal description of each property. For instance, the 
Commutative Property of Addition states that the order in which two real numbers are 
added does not affect their sum.

Basic Rules of Algebra

Let a, b, and c be real numbers, variables, or algebraic expressions.

 Property Example

Commutative Property of Addition: a + b = b + a 4x + x2 = x2 + 4x

Commutative Property of Multiplication: ab = ba (1 − x)x2 = x2(1 − x)

Associative Property of Addition: (a + b) + c = a + (b + c) (x + 5) + x2 = x + (5 + x2)

Associative Property of Multiplication: (ab)c = a(bc) (2x ∙ 3y)(8) = (2x)(3y ∙ 8)

Distributive Properties: a(b + c) = ab + ac 3x(5 + 2x) = 3x ∙ 5 + 3x ∙ 2x

(a + b)c = ac + bc ( y + 8)y = y ∙ y + 8 ∙ y

Additive Identity Property: a + 0 = a 5y2 + 0 = 5y2

Multiplicative Identity Property: a ∙ 1 = a (4x2)(1) = 4x2

Additive Inverse Property: a + (−a) = 0 6x3 + (−6x3) = 0

Multiplicative Inverse Property: a ∙ 1
a

= 1, a ≠ 0 (x2 + 4)( 1
x2 + 4) = 1

Because subtraction is defined as “adding the opposite,” the Distributive Properties 
are also true for subtraction. For instance, the “subtraction form” of a(b + c) = ab + ac
is written as

a(b − c) = ab − ac.

Properties of Negation and Equality

Let a, b, and c be real numbers, variables, or algebraic expressions.

 Property Example

1. (−1)a = −a (−1)7 = −7

2. −(−a) = a −(−6) = 6

3. (−a)b = −(ab) = a(−b) (−5)3 = −(5 ∙ 3) = 5(−3)

4. (−a)(−b) = ab (−2)(−x) = 2x

5. −(a + b) = (−a) + (−b) −(x + 8) = (−x) + (−8) = −x − 8

6. If a = b, then a + c = b + c. 1
2 + 3 = 0.5 + 3

7. If a = b, then ac = bc. 42(2) = 16(2)

8. If a ± c = b ± c, then a = b. 1.4 − 1 = 7
5 − 1 ⇒ 1.4 = 7

5

9.  If ac = bc and c ≠ 0, 3x = 3 ∙ 4 ⇒ x = 4
 then a = b.

Remark
Be sure you see the difference 
between the opposite of a 
number and a negative number. 
If a is already negative, then 
its opposite, −a, is positive. 
For instance, if a = −2, then 
−a = −(−2) = 2.



Properties of Zero

Let a and b be real numbers, variables, or algebraic expressions.

1. a + 0 = a and a − 0 = a 2. a ∙ 0 = 0

4. 
a
0

 is undefined.3. 
0
a

= 0, a ≠ 0

5. Zero-Factor Property: If ab = 0, then a = 0 or b = 0.

The “or” in the Zero-Factor Property includes the possibility that either or both 
factors may be zero. This is an inclusive or, and it is the way the word “or” is generally 
used in mathematics.

Properties and Operations of Fractions

Let a, b, c, and d be real numbers, variables, or algebraic expressions such that 
b ≠ 0 and d ≠ 0.

1. Equivalent Fractions: 
a
b

=
c
d

 if and only if ad = bc. 

2. Rules of Signs: −
a
b

=
−a
b

=
a

−b
 and 

−a
−b

=
a
b

3. Generate Equivalent Fractions: 
a
b

=
ac
bc

, c ≠ 0

4. Add or Subtract with Like Denominators: 
a
b

±
c
b

=
a ± c

b

5. Add or Subtract with Unlike Denominators: 
a
b

±
c
d

=
ad ± bc

bd

6. Multiply Fractions: 
a
b

∙ c
d

=
ac
bd

7. Divide Fractions: 
a
b

 ÷ 
c
d

=
a
b

∙ d
c

=
ad
bc

,  c ≠ 0

EXAMPLE 6EXAMPLE 6EXAMPLE 6 Properties and Operations of Fractions

a. Equivalent fractions: 
x
5

=
3 ∙ x
3 ∙ 5

=
3x
15

 b. Divide fractions: 
7
x
 ÷ 

3
2

=
7
x

∙ 2
3

=
14
3x

Checkpoint Audio-video solution in English & Spanish at LarsonPrecalculus.com.

a. Multiply fractions: 
3
5

∙ x
6

 b. Add fractions: 
x

10
+

2x
5

 

If a, b, and c are integers such that ab = c, then a and b are factors or divisors 
of c. A prime number is an integer that has exactly two positive factors: itself and 1. 
For example, 2, 3, 5, 7, and 11 are prime numbers. The numbers 4, 6, 8, 9, and 10 are 
composite because they can be written as the product of two or more prime numbers. 
The number 1 is neither prime nor composite. The Fundamental Theorem of 
Arithmetic states that every positive integer greater than 1 can be written as the product 
of prime numbers. For instance, the prime factorization of 24 is 

24 = 2 ∙ 2 ∙ 2 ∙ 3.

8 Chapter P Prerequisites

Remark
In Property 1, the phrase 
“if and only if ” implies two 
statements. One statement is: 
If a�b = c�d, then ad = bc. 
The other statement is: If 
ad = bc, where b ≠ 0 and 
d ≠ 0, then a�b = c�d.

−41
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Identifying Subsets of Real Numbers  In Exercises  
13–18, determine which numbers are (a) natural 
numbers, (b) whole numbers, (c) integers, (d) rational 
numbers, and (e) irrational numbers.

13.	 {−9, −7
2, 5, 23, √2, 0, 1, −4, −1}

14.	 {√5, −7, −7
3, 0, 3.12, 54, −2, −8, 3}

15.	 {2.01, 0.666 . . . , −13, 0.010110111 . . . , 1, −10, 20}
16.	 {2.3030030003 . . ., 0.7575, −4.63, √10, −2, 0.3, 8}
17.	 {−π, −1

3, 63, 12√2, −7.5, −2, 3, −3}
18.	 {25, −17, −12

5 , √9, 3.12, 12π, 6, −4, 18}
Finding the Decimal Form of a Rational Number  In 
Exercises 19–24, use a calculator to find the decimal 
form of the rational number. If it is a nonterminating 
decimal, write the repeating pattern.

19.	 5
16		  20.	 17

4

21.	 41
333		  22.	 3

7

23.	 −100
11 	 24.	 −218

33

Writing a Decimal as a Fraction  In Exercises 25–28, use 
a calculator to rewrite the rational number as the ratio 
of two integers.

25.	 6.4		  26.	 −7.5

27.	 −12.3	 28.	 1.87

Writing an Inequality  In Exercises 29 and 30, 
approximate the numbers and place the correct 
inequality symbol (< or >) between them.

29.	
0−1−2 1 2 3 4

30.	
−7 −6 −5 −4 −3 −2 −1 0

Plotting Real Numbers  In Exercises 31–36, plot the two 
real numbers on the real number line. Then place the 
correct inequality symbol (< or >) between them.

31.	 −4, 2	 32.	 −3.5, 1

33.	 3
2, −7

2	 34.	 −8
7, −3

7

35.	 −3
4, −5

8	 36.	 5
6, 23

Interpreting Inequalities  In Exercises 37–44, (a) verbally 
describe the subset of real numbers represented by the 
inequality, (b) sketch the subset on the real number line, 
and (c) state whether the interval is bounded or unbounded.

37.	 x ≤ 5	 38.	 x > −3

39.	 x < 0	 40.	 x ≥ 4

41.	 −2 < x < 2

42.	 0 ≤ x ≤ 5

43.	 −1 ≤ x < 0

44.	 −9 < x ≤ −6

Vocabulary and Concept Check
In Exercises 1–5, fill in the blank(s).

  1.	�A real number is _______ when it can be written as the ratio 
p
q

 of two integers, 
where q ≠ 0.

  2.	_______ numbers have infinite nonrepeating decimal representations.

  3.	A _______ number is an integer with exactly two positive factors: itself and 1.

  4.	�An algebraic expression is a combination of letters called _______ and real 
numbers called _______ .

  5.	The _______ of an algebraic expression are those parts separated by addition.

  6.	Is ∣5 − 2∣ = ∣2 − 5∣?
In Exercises 7–12, match each property with its name.

  7.	Commutative Property of Addition	 (a)	 a ∙ 1 = a

  8.	Associative Property of Multiplication	 (b)	a(b + c) = ab + ac

  9.	Additive Inverse Property	 (c)	 a + b = b + a

10.	Distributive Property	 (d)	(ab)c = a(bc)
11.	Associative Property of Addition	 (e)	 a + (−a) = 0

12.	Multiplicative Identity Property	 (f )	 (a + b) + c = a + (b + c)

Procedures and Problem Solving

P.1  Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.




